On Minimum Average Stretch Spanning Trees in Polygonal 2-Trees
نویسندگان
چکیده
A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. We consider the problem of computing a minimum average stretch spanning tree in polygonal 2-trees, a super class of 2-connected outerplanar graphs. For a polygonal 2-tree on n vertices, we present an algorithm to compute a minimum average stretch spanning tree in O(n logn) time. This also finds a minimum fundamental cycle basis in polygonal 2-trees.
منابع مشابه
Diploma Thesis Minimum Stretch Spanning Trees
Spanning trees have always been of great interest in various areas of computer science. The same is true for the idea of shortest paths in a graph. Minimum Stretch Spanning Trees can be described as a combination of these two concepts. On the one hand they are spanning trees, on the other hand they have a minimum stretch which means that the distances between the nodes in the spanning tree rema...
متن کاملIndependent Spanning Trees with Small Stretch
A pair of spanning trees rooted at a vertex r are independent if for every vertex v the pair of unique tree paths from v to the root r are disjoint. This paper presents the rst analysis of the path lengths involved in independent spanning trees in 2-edge-connected and 2-vertex-connected graphs. We present upper and lower bounds on the stretch factors of pairs of independent spanning trees, wher...
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملNear Linear-Work Parallel SDD Solvers, Low-Diameter Decomposition, and Low-Stretch Subgraphs
This paper presents the design and analysis of a near linear-work parallel algorithm for solving symmetric diagonally dominant (SDD) linear systems. On input of a SDD n-by-n matrix A with m nonzero entries and a vector b, our algorithm computes a vector x̃ such that ‖x̃−Ab‖A ≤ ε · ‖Ab‖A in O(m log n log 1ε ) work and O(m log 1 ε ) depth for any fixed θ > 0. The algorithm relies on a parallel algo...
متن کاملOptimal Independent Spanning Trees on Hypercubes
Two spanning trees rooted at some vertex r in a graph G are said to be independent if for each vertex v of G, v ≠ r, the paths from r to v in two trees are vertex-disjoint. A set of spanning trees of G is said to be independent if they are pairwise independent. A set of independent spanning trees is optimal if the average path length of the trees is the minimum. Any k-dimensional hypercube has ...
متن کامل